In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.

Anshu shukla
0

Solution:

Consider this diagram









Here, join BE and CE.

Now, since AE is the bisector of ∠BAC,

∠BAE = ∠CAE

Also,

∴arc BE = arc EC

This implies, chord BE = chord EC

Now, consider triangles ΔBDE and ΔCDE,

DE = DE     (It is the common side)

BD = CD     (It is given in the question)

BE = CE      (Already proved)

So, by SSS congruency, ΔBDE ≅ ΔCDE.

Thus, ∴∠BDE = ∠CDE

We know, ∠BDE = ∠CDE = 180°

Or, ∠BDE = ∠CDE = 90°

∴ DE ⊥ BC (hence proved).

Post a Comment

0Comments

Hello,
May I help you ?

Post a Comment (0)

#buttons=(Ok, Go it!) #days=(20)

Our website uses cookies to enhance your experience. Check Now
Ok, Go it!